A Visual Attention-Based Approach for Automatic Landmark Selection and Recognition

نویسندگان

  • Nabil Ouerhani
  • Heinz Hügli
  • Gabriel Gruener
  • Alain Codourey
چکیده

Visual attention refers to the ability of a vision system to rapidly detect visually salient locations in a given scene. On the other hand, the selection of robust visual landmarks of an environment represents a cornerstone of reliable vision-based robot navigation systems. Indeed, can salient scene locations provided by visual attention be useful for robot navigation? This work investigates the potential and effectiveness of the visual attention mechanism to provide pre-attentive scene information to a robot navigation system. The basic idea is to detect and track the salient locations, or spots of attention by building trajectories that memorize the spatial and temporal evolution of these spots. Then, a persistency test, which is based on the examination of the lengths of built trajectories, allows the selection of good environment landmarks. The selected landmarks can be used for feature-based localization and mapping systems which helps mobile robot to accomplish navigation tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Selection and Detection of Visual Landmarks Using Multiple Segmentations

Detection of visual landmarks is an important problem in the development of automated, vision-based agents working on unstructured environments. In this paper, we present an unsupervised approach to select and to detect landmarks in images coming from a video stream. Our approach integrates three main visual mechanisms: attention, area segmentation, and landmark characterization. In particular,...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

Experimenting a Visual Attention Model in the Context of CBIR Systems

Many novel applications in the field of object recognition and pose estimation have been built relying on local invariant features extracted from selected key points of the images. Such keypoints usually lie on high-contrast regions of the image, such as object edges. However, the visual saliency of the those regions is not considered by state-of-the art detection algorithms that assume the use...

متن کامل

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

Autonomous Robot Navigation with Automatic Learning of Visual Landmarks

By observing visual landmarks it is possible to continuously update an estimated robot position while the robot is moving. In particular, using a triangulation algorithm based on three landmarks the robot position can be estimated each time three landmarks are observed. If the selected landmark triplet is an optimal triplet, the estimated robot position is accurate and errors do not accumulate....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004